Status `~/Documents/github.com/ucla-biostat-257/2023spring/slides/14-sweep/Project.toml`
[7522ee7d] SweepOperator v0.3.3
[37e2e46d] LinearAlgebra
[9a3f8284] Random
Activating project at `~/Documents/github.com/ucla-biostat-257/2023spring/slides/14-sweep`
1 Definition
We learnt Cholesky decomposition and QR decomposition approaches for solving linear regression.
The popular statistical software SAS uses sweep operator for linear regression and matrix inversion.
Assume \(\mathbf{A}\) is symmetric and positive semidefinite.
Sweep on the \(k\)-th diagonal entry \(a_{kk} \ne 0\) yields \(\widehat A\) with entries \[
\begin{eqnarray*}
\widehat a_{kk} &=& - \frac{1}{a_{kk}} \\
\widehat a_{ik} &=& \frac{a_{ik}}{a_{kk}} \\
\widehat a_{kj} &=& \frac{a_{kj}}{a_{kk}} \\
\widehat a_{ij} &=& a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k.
\end{eqnarray*}
\]\(n^2\) flops (taking into account of symmetry).
Inverse sweep sends \(\mathbf{A}\) to \(\check A\) with entries \[
\begin{eqnarray*}
\check a_{kk} &=& - \frac{1}{a_{kk}} \\
\check a_{ik} &=& - \frac{a_{ik}}{a_{kk}} \\
\check a_{kj} &=& - \frac{a_{kj}}{a_{kk}} \\
\check a_{ij} &=& a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k.
\end{eqnarray*}
\]\(n^2\) flops (taking into account of symmetry).
\(\check{\hat{\mathbf{A}}} = \mathbf{A}\).
Successively sweeping all diagonal entries of \(\mathbf{A}\) yields \(- \mathbf{A}^{-1}\).
Exercise: invert a \(2 \times 2\) matrix, say \[
\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix},
\] on paper using sweep operator.
Block form of sweep: Let the symmetric matrix \(\mathbf{A}\) be partitioned as \[
\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}.
\] If possible, sweep on the diagonal entries of \(\mathbf{A}_{11}\) yields \[
\begin{pmatrix}
\, - \mathbf{A}_{11}^{-1} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}
\end{pmatrix}.
\]
Order dose not matter. The block \(\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}\) is recognized as the Schur complement of \(\mathbf{A}_{11}\).
Pd and determinant: \(\mathbf{A}\) is pd if and only if each diagonal entry can be swept in succession and is positive until it is swept. When a diagonal entry of a pd matrix \(\mathbf{A}\) is swept, it becomes negative and remains negative thereafter. Taking the product of diagonal entries just before each is swept yields the determinant of \(\mathbf{A}\).