the Top

A'goﬁf‘tmf
T\ /7/

THE FF1T: AN ALGORITHM
THE WHOLE FAMILY CAN USE

The fast Fourier transform is one of the fundamental algorithm families in digital
information processing. The author discusses its past, present, and future, along with its
important role in our current digital revolution.

A paper by Cooley and Tukey described a recipe
for computing Fourier coefficients of a time se-
ries that used many fewer machine operations
than did the straightforward procedure ... What
lies over the horizon in digital signal processing is
anyone’s guess, but I think it will surprise us all.
— Bruce P. Bogert, IEEE Trans. Audio Electronics,
AU-15, No. 2, 1967, p. 43.

hese days, it is almost beyond belief
that there was a time before digital
technology. It seems almost every-
one realizes that the data whizzing
over the Internet, bustling through our modems,
or crashing into our cell phones is ultimately just
a sequence of 0% and 1’s—a digital sequence—
that magically makes the world the convenient,
high-speed place it is today. Much of this magic
is due to a family of algorithms that collectively
go by the name the fast Fourier transform. In-

1521-9615/00/$10.00 © 2000 IEEE

DANIEL N. ROCKMORE

Dartmouth College

deed, the FFT is perhaps the most ubiquitous
algorithm used today to analyze and manipulate
digital or discrete data.

My own research experience with various fla-
vors of the FFT is evidence of its wide range of
applicability: electroacoustic music and audio-
signal processing, medical imaging, image pro-
cessing, pattern recognition, computational che-
mistry, error-correcting codes, spectral methods
for partial differential equations, and last but not
least, mathematics. Of course, I could list many
more applications, notably in radar and commu-
nications, but space and time restrict. E. Oran
Brigham’s book is an excellent place to start, es-
pecially pages two and three, which contain a
(nonexhaustive) list of 77 applications!'

History

We can trace the FF T’ first appearance, like
so much of mathematics, back to Gauss.” His in-
terests were in certain astronomical calculations
(a recurrent area of FFT application) that dealt
with the interpolation of asteroidal orbits from
a finite set of equally spaced observations. Un-
doubtedly, the prospect of a huge, laborious hand
calculation provided good motivation to develop

60

COMPUTING IN SCIENCE & ENGINEERING

Discrete Fourier transforms

The fast Fourier transform efficiently computes the discrete
Fourier transform. Recall that the DFT of a complex input vec-
tor of length N, X = (X(0) ..., X(N — 1)), denoted X ,isan-
other vector of length N given by the collection of sums

N-1
X(k) =S X(j W 1
,Zo N 1)

where Wy = exp(2rr«/——1/ N) . Equivalently, we can view
this as the matrix-vector product Fy - X, where

(i)

is the so-called Fourier matrix. The DFT is an invertible trans-
form with inverse given by

K=o S KIOW* @

Thus, if computed directly, the DFT would require N oper-
ations. Instead, the FFT is an algorithm for computing the
DFT in O(N log N) operations. Note that we can view the
inverse as the DFT of the function

1~
N,

so that we can also use the FFT to invert the DFT.

One of the DFT’s most useful properties is that it converts
circular or cyclic convolution into pointwise multiplication,
for example,

XY (k) = X(K) (k) 3)
where
X (1))=Y XAN (=1 - &)
=0

Consequently, the FFT gives an O(N log N) (instead of an N?)
algorithm for computing convolutions: First compute the
DFTs of both X and Y, then compute the inverse DFT of the
sequence obtained by multiplying pointwise X and Y .

In retrospect, the idea underlying the Cooley-Tukey FFT is
quite simple. If N = N;N,, then we can turn the 1D equation
(Equation 1) into a 2D equation with the change of variables

j=jab)=aN,+b,0<a<N, 0<b<N,
k=k(cd)=cN,+d,0<c<N;,0<d< N, (5)

Using the fact W™ =W'Wy , it follows quickly from

Equation 5 that we can rewrite Equation 1 as

7 S b(cN,+d N d
Xe,d)= Y W) S X(a, by (©)
b=0 a=0

The computation is now performed in two steps. First,
compute for each b the inner sums (for all d)

Np-1
i@n>=ZX@bwﬂ @)

which is now interpreted as a subsampled DFT of length
N,. Even if computed directly, at most N1N22~arithmetic op-
erations are required to compute all of the X(b,d). Finally,
we compute N;N, transforms of length Ny:

Np-1

ZWb(CNZ*d))Z(b,d) (8)

b=0
which requires at most an additional N;N,? operations.
Thus, instead of (N;N,)? operations, this two-step approach
uses at most (N;N,)(N; + N,) operations. If we had more
factors in Equation 6, then this approach would work even
better, giving Cooley and Tukey’s result. The main idea is
that we have converted a 1D algorithm, in terms of index-
ing, into a 2D algorithm. Furthermore, this algorithm has
the advantage of an in-place implementation, and when
accomplished this way, concludes with data reorganized
according to the well-known bit-reversal shuffle.

This “decimation in time” approach is one of a variety of
FFT techniques. Also notable is the dual approach of “deci-
mation in frequency” developed simultaneously by Gordon
Sande, whose paper with W. Morven Gentleman also con-
tains an interesting discussion on memory consideration as
it relates to implementational issues.* Charles Van Loan’s
book discusses some of the other variations and contains an
extensive bibliography.? Many of these algorithms rely on
the ability to factor N. When N is prime, we can use a differ-
ent idea in which the DFT is effectively reduced to a cyclic
convolution instead.®

References

1. W.M. Gentleman and G. Sande, “Fast Fourier Transforms—For Fun and
Profit,” Proc. Fall Joint Computer Conf. AFIPS, Vol. 29, Spartan, Washington,
D.C., 1966, pp. 563-578.

2. C.VanLoan, Computational Framework for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

3. C.M. Rader, “Discrete Fourier Transforms When the Number of Data Points is
Prime,” Proc. IEEE, IEEE Press, Piscataway, N.J., Vol. 56, 1968, pp. 1107-1108.

a fast algorithm. Fewer calculations also imply Fourier transforms of length Ny, which are com-
less opportunity for error and therefore lead to bined as N; DFTs of length N,. (See the “Dis-
numerical stability. Gauss observed that he could crete Fourier transforms” sidebar for detailed
break a Fourier series of bandwidth N = N|N, information.) Gauss’s algorithm was never pub-
into a computation of N, subsampled discrete lished outside of his collected works.

JANUARY/FEBRUARY 2000

61

The statistician Frank Yates published a less gen-
eral but still important version of the FFT in 1932,
which we can use to efficiently compute the
Hadamard and Walsh transforms.’ Yatess “inter-
action algorithm” is a fast technique designed to
compute the analysis of variance for a 2"-factorial
design and is described in almost any text on statis-
tical design and analysis of experiments.

Another important predecessor is the work of
G.C. Danielson and Cornelius Lanczos, per-
formed in the service of x-ray crystallography, an-
other area for applying FFT technology.® Their
“doubling trick” showed how to reduce a DFT on
2N points to two DF'Ts on N points using only N
extra operations. Today, it’s amusing to note their
problem sizes and timings: “Adopting these im-
provements, the approximate times for Fourier
analysis are 10 minutes for 8 coefficients, 25 min-
utes for 16 coefficients, 60 minutes for 32 coeffi-
cients, and 140 minutes for 64 coefficients.”* This
indicates a running time of about .37 N'log N min-
utes for an N-point DFT!

Despite these early discoveries of an FFT; it
wasn’t until James W. Cooley and John W. Tukey’s
article that the algorithm gained any notice. The
story of their collaboration is an interesting one.
Tukey arrived at the basic reduction while in a meet-
ing of President Kennedy’s Science Advisory Com-
mittee. Among the topics discussed were techniques
for offshore detection of nuclear tests in the Soviet
Union. Ratification of a proposed United States—
Soviet Union nuclear test ban depended on the de-
velopment of a method to detect the tests without
actually visiting Soviet nuclear facilities. One idea
was to analyze seismological time-series data ob-
tained from offshore seismometers, the length and
number of which would require fast algorithms to
compute the DFT. Other possible applications to
national security included the long-range acoustic
detection of nuclear submarines.

Richard Garwin of IBM was another participant
at this meeting, and when Tukey showed him the
idea, he immediately saw a wide range of potential
applicability and quickly set to getting the algorithm
implemented. He was directed to Cooley, and,
needing to hide the national security issues, told
Cooley that he wanted the code for another prob-
lem of interest: the determination of the spin-
orientation periodicities in a 3D crystal of He’.
Cooley was involved with other projects, and sat
down to program the Cooley-Tukey FFT only after
much prodding. In short order, he and Tukey pre-
pared a paper which, for a mathematics or computer
science paper, was published almost instantaneously
(in six months).’ This publication, as well as Gar-

win’s fervent proselytizing, did a lot to publicize the
existence of this (apparently) new fast algorithm.®

The timing of the announcement was such that
usage spread quickly. The roughly simultaneous de-
velopment of analog-to-digital converters capable
of producing digitized samples of a time-varying
voltage at rates of 300,000 samples per second had
already initiated something of a digital revolution.
This development also provided scientists with
heretofore unimagined quantities of digital data to
analyze and manipulate (just as is the case today).
The “standard” applications of FFT as an analysis
tool for waveforms or for solving PDEs generated a
tremendous interest in the algorithm a priori. But
moreover, the ability to do this analysis quickly let
scientists from new areas try the algorithm without
having to invest too much time and energy.

Its effect

It’s difficult for me to overstate FFT’ impor-
tance. Much of its central place in digital signal
and image processing is due to the fact that it
made working in the frequency domain equally
computationally feasible as working in the tem-
poral or spatial domain. By providing a fast algo-
rithm for convolution, the FFT enabled fast,
large-integer and polynomial multiplication, as
well as efficient matrix-vector multiplication for
Toeplitz, circulant, and other kinds of structured
matrices. More generally, it plays a key role in
most efficient sorts of filtering algorithms. Modi-
fications of the FFT are one approach to fast al-
gorithms for discrete cosine or sine transforms, as
well as Chebyshev transforms. In particular, the
discrete cosine transform is at the heart of MP3
encoding, which gives life to real-time audio
streaming. Last but not least, it’s also one of the
few algorithms to make it into the movies—I can
still recall the scene in No Way Out where the im-
age-processing guru declares that he will need to
“Fourier transform the image” to help Kevin
Costner see the detail in a photograph!

Even beyond these direct technological appli-
cations, the FFT influenced the direction of aca-
demic research, too. The FFT was one of the first
instances of a less-than-straightforward algorithm
with a high payoff in efficiency used to compute
something important. Furthermore, it raised the
natural question, “Could an even faster algorithm
be found for the DFT?” (the answer is no’),
thereby raising awareness of and heightening in-
terest in the subject of lower bounds and the
analysis and development of efficient algorithms
in general. With respect to Shmuel Winograd’s

62

COMPUTING IN SCIENCE & ENGINEERING

lower-bound analysis, Cooley writes in the dis-
cussion of the 1968 Arden House Workshop on
FFT, “These are the beginnings, I believe, of a
branch of computer science which will probably
uncover and evaluate other algorithms for high
speed computers.”

Ironically, the FFT’ prominence might have
slowed progress in other research areas. It pro-
vided scientists with a big analytic hammer, and,
for many, the world suddenly looked as though it
were full of nails—even if this wasn’t always so.
Researchers sometimes massaged problems that
might have benefited from other, more appropriate
techniques into a DFT framework, simply because
the FF'T was so efficient. One example that comes
to mind is some of the early spectral-methods work
to solve PDEs in spherical geometry. In this case,
the spherical harmonics are a natural set of basis
functions. Discretization for numerical solutions
implies the computation of discrete Legendre
transforms (as well as FF'Ts). Many of the early
computational approaches tried instead to ap-
proximate these expansions completely in terms
of Fourier series, rather than address the develop-
ment of an efficient Legendre transform.

Even now there are still lessons to learn from the
FFT’ development. In this day and age, where any
new technological idea seems fodder for Internet
venture capitalists and patent lawyers, it is natural
to ask, “Why didn’t IBM patent the FFT?” Cooley
explained that because Tukey wasn’t an IBM em-
ployee, IBM worried that it might not be able to
gain a patent. Consequently, IBM had a great in-
terest in putting the algorithm in the public do-
main. The effect was that then nobody else could
patent it either. This did not seem like such a great
loss because at the time, the prevailing attitude was
that a company made money in hardware, not soft-
ware. In fact, the FFT was designed as a tool to an-
alyze huge time series, in theory something only
supercomputers tackled. So, by placing in the pub-
lic domain an algorithm that would make time-
series analysis feasible, more big companies might
have an interest in buying supercomputers (like
IBM mainframes) to do their work.

Whether having the FFT in the public domain
had the effect IBM hoped for is moot, but it cer-
tainly provided many scientists with applications
on which to apply the algorithm. The breadth of
scientific interests at the Arden workshop (held
only two years after the paper’s publication) is truly
impressive. In fact, the rapid pace of today’s tech-
nological developments is in many ways a testa-
ment to this open development’s advantage. This is
a cautionary tale in today’s arena of proprietary re-

search, and we can only wonder which of the many
recent private technological discoveries might have
prospered from a similar announcement.

The future FFT

As torrents of digital data continue to stream into
our computers, it seems that the FF'T will continue
to play a prominent role in our analysis and under-
standing of this river of data. What follows is a brief
discussion of future FFT challenges, as well as a few
new directions of related research.

Even bigger FFTs

Astronomy continues to be a chief consumer of
large FFT technology. The needs of projects like
MAP (Microwave Anisotropy Project) or LIGO
(Laser InterFerometer Gravitational-Wave Obser-
vatory) require FF'Ts of several (even tens of) giga-
points. FFTs of this size do not fit in the main
memory of most machines, and these so-called ouz-
of-core FF'Ts are an active area of research.”

As computing technology evolves, undoubtedly,
versions of the FFT will evolve to keep pace and
take advantage of it. Different kinds of memory
hierarchies and architectures present new chal-
lenges and opportunities.

Approximate and nonuniform FFTs

For a variety of applications (such as fast MRI),
we need to compute DFTs for nonuniformly
spaced grid points and frequencies. Multipole-
based approaches efficiently compute these quan-
tities in such a way that the running time increases
by a factor of

an
logEH

where € denotes the approximation’s precision.
Algebraic approaches based on efficient polyno-
mial evaluation are also possible.!!

10

Group FFTs

The FF'T might also be explained and interpreted
using the language of group representation the-
ory—working along these lines raises some inter-
esting avenues for generalization. One approach is
toview a 1D DFT of length N as computing the ex-
pansion of a function defined on Cy, the cyclic
group of length N (the group of integers mod N) in
terms of the basis of irreducible matrix elements of
Cy, which are precisely the familiar sampled expo-
nentials: (M) =exp(2r/=1km/N). The FFT is a
highly efficient algorithm for computing the ex-
pansion in this basis. More generally, a function on

JANUARY/FEBRUARY 2000

63

any compact group (cyclic or not) has an expan-
sion in terms of a basis of irreducible matrix ele-
ments (which generalize the exponentials from the
point of view of group invariance). It’s natural to
wonder if efficient algorithms for performing this
change of basis exist. For example, the problem of
efficiently computing spherical harmonic expan-
sions falls into this framework.

The first FFT for a noncommutative finite
group seems to have been developed by Alan
Willsky in the context of analyzing certain Mar-
kov processes.'? To date, fast algorithms exist for
many classes of compact groups.'! Areas of ap-
plications of this work include signal processing,
data analysis, and robotics.!®

Quantum FFTs

One of the first great triumphs of the quan-
tum-computing model is Peter Shor’s fast algo-
rithm for integer factorization on a quantum
computer.'* At the heart of Shor’ algorithm is a
subroutine that computes (on a quantum com-
puter) the DFT of a binary vector representing
an integer. The implementation of this trans-
form as a sequence of one- and two-bit quantum
gates, now called the quantum FFT; is effectively
the Cooley-Tukey FFT realized as a particular
factorization of the Fourier matrix into a product
of matrices composed as certain tensor products
of two-by-two unitary matrices, each of which is
a so-called local unitary transform. Similarly,
the quantum solution to the Modified Deutsch-
Josza problem uses the matrix factorization aris-
ing from Yates’s algorithm."* Extensions of these
ideas to the more general group transforms
mentioned earlier are currently being explored.

hat’s the FFT—both parent and

child of the digital revolution, a

computational technique at the

nexus of the worlds of business and
entertainment, national security and public com-
munication. Although it’s anyone’s guess as to
what lies over the next horizon in digital signal
processing, the FFT will most likely be in the
thick of it. &

Acknowledgment

Special thanks to Jim Cooley, Shmuel Winograd, and
Mark Taylor for helpful conversations. The Santa Fe Ins-
titute provided partial support and a very friendly and
stimulating environment in which to write this paper. NSF
Presidential Faculty Fellowship DMS-9553134 supported
part of this work.

References

1. E.O.Brigham, The Fast Fourier Transform and Its Applications, Pren-
tice Hall Signal Processing Series, Englewood Cliffs, N.J., 1988.

2. M.T. Heideman, D.H. Johnson, and C.S. Burrus, “Gauss and the
History of the Fast Fourier Transform,” Archive for History of Exact
Sciences, Vol. 34, No. 3, 1985, pp. 265-277.

3. F.Yates, “The Design and Analysis of Factorial Experiments,” Im-
perial Bureau of Soil Sciences Tech. Comm., Vol. 35, 1937.

4. G.C. Danielson and C. Lanczos, “Some Improvements in Practical
Fourier Analysis and Their Application to X-Ray Scattering from
Liquids,” J. Franklin Inst., Vol. 233, Nos. 4 and 5, 1942, pp.
365-380 and 432-452.

5. L.W. Cooley and J.W. Tukey, “An Algorithm for Machine Calcula-
tion of Complex Fourier Series,” Mathematics of Computation, Vol.
19, Apr., 1965, pp. 297-301.

6. J.W. Cooley, “The Re-Discovery of the Fast Fourier Transform Al-
gorithm,” Mikrochimica Acta, Vol. 3, 1987, pp. 33-45.

7. S. Winograd, “Arithmetic Complexity of Computations,” CBMS-
NSF Regional Conf. Series in Applied Mathematics, Vol. 33, SIAM,
Philadelphia, 1980.

8. “Special Issue on Fast Fourier Transform and Its Application to
Digital Filtering and Spectral Analysis,” IEEE Trans. Audio Electron-
ics, AU-15, No. 2, 1969.

9. T.H. Cormen and D.M. Nicol, “Performing Out-of-Core FFTs on
Parallel Disk Systems,” Parallel Computing, Vol. 24, No. 1, 1998,
pp. 5-20.

10. A. Dutt and V. Rokhlin, “Fast Fourier Transforms for Nonequi-
spaced Data,” SIAM J. Scientific Computing, Vol. 14, No. 6, 1993,
pp. 1368-1393; continued in Applied and Computational Har-
monic Analysis, Vol. 2, No. 1, 1995, pp. 85-100.

11. D.K. Maslen and D.N. Rockmore, “Generalized FFTs—A Survey
of Some Recent Results,” Groups and Computation, II, DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., Vol. 28, Amer. Math. Soc.,
Providence, R.l., 1997, pp. 183-237.

12. A.S. Willsky, “On the Algebraic Structure of Certain Partially Ob-
servable Finite-State Markov Processes,” Information and Control,
Vol. 38, 1978, pp. 179-212.

13. D.N. Rockmore, “Some Applications of Generalized FFTs (An Ap-
pendix with D. Healy),” Groups and Computation Il, DIMACS Series
on Discrete Math. Theoret. Comput. Sci., Vol. 28, American Math-
ematical Society, Providence, R.l., 1997, pp. 329-369.

14. P.W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM J. Com-
puting, Vol. 26, No. 5, 1997, pp. 1484-1509.

15. D. Simon, “On the Power of Quantum Computation,” Proc. 35th
Annual ACM Symp. on Foundations of Computer Science, ACM
Press, New York, 1994, pp. 116-123.

Daniel N. Rockmore is an associate professor of math-
ematics and computer science at Dartmouth College,
where he also serves as vice chair of the Department of
Mathematics. His general research interests are in the
theory and application of computational aspects of
group representations, particularly to FFT generaliza-
tions. He received his BA and PhD in mathematics from
Princeton University and Harvard University, respectively.
In 1995, he was one of 15 scientists to receive a five-
year NSF Presidential Faculty Fellowship from the White
House. He is a member of the American Mathematical
Society, the IEEE, and SIAM. Contact him at the Dept.
of Mathematics, Bradley Hall, Dartmouth College,
Hanover, NH 03755; rockmore@cs.dartmouth.edu;
www.cs.darthmouth.edu/~rockmore.

64

COMPUTING IN SCIENCE & ENGINEERING

